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Abstract. We consider a systematic projection method for terminating the Green function 
equations of motion for Hubbard X-operators. This gives a set of mean fields that depend 
on the operators chosen. When applied to lowest order in the N-fold-degenerate U+ 3~ 

Anderson model an expression for the one-electron Green function is obtained that is exact 
for N = 1 and in the limit N +  a. This approach avoids the necessity of introducing auxiliary 
fields, such as constraint fields or slave bosons, to obtain asymptotically exact mean fields in 
the large-N limit and has general applicability in similar strongly correlated problems. 

Mean-field theories that are asymptotically exact in the limit of large degeneracy N have 
been developed in recent years for magnetic impurity models such as the Coqblin- 
Schrieffer model and the U-, degenerate Anderson model. (For recent reviews see 
Newns and Read (1987), Bickers (1987).) The Hamiltonians for these models are most 
conveniently expressed in terms of Hubbard X-operators Xp4 = lp)(q1 where Ip) and 
(41 are impurity-state ket and bra operators. Because these operators satisfy the com- 
mutator relations 

and not Bose or Fermi commutator relations, the standard many-body techniques, such 
as perturbation theory in terms of Feynman diagrams, are not applicable. Rep- 
resentations have therefore been sought in terms of auxiliary (slave) Bose or Fermi 
operators which restore some familiar aspects of many-body methods. 

Such representations are possible, in general, provided a constraint is imposed on 
the totaloccupancyof the Boseof Fermiparticles, whichis accomplished by introducing a 
constraint field. Making the saddle point approximations for the constraint and auxiliary 
Bose fields yields a mean- field solution that is asymptotically exact as N +  x: and at low 
temperatures (Read and Newns 1983). When Gaussian fluctuations to these mean fields 
are taken into account, corrections to order l /Nare  obtained (Read 1985). This flexible 
approach has been generalised to the periodic Anderson model to describe heavy 
fermions and has more recently been applied to the Hubbard model in exploring the 
possibility of strong-correlation mechanisms for high-T, superconductivity. 
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However, the method is not without limitations. It breaks down at higher tem- 
peratures as the constraint field becomes simply a Lagrange multiplier in the saddle 
point approximation, and is then insufficient to suppress thermal fluctuations which 
violate the constraint. Moreover, improvements beyond Gaussian fluctuations in the 
Boson field seem to be prohibitively difficult. Neither is it clear that the approximations 
at the Gaussian level are sufficient for describing models for which the regime of physical 
interest corresponds to N = 2. 

An alternative approach to the slave Boson method is to work directly with the 
Hubbard X-operators and use Brillouin-Wigner perturbation theory (see, for example, 
Keiter and Morandi 1984). Here the perturbation terms can be summed systematically 
in a l/Nexpansion, or self-consistently as in the non-crossing approximation (NCA) (see, 
for example, Bickers 1987). Results are now not limited to the low-temperature regime 
as there is no longer violation of an operator constraint. The chief disadvantage of these 
methods is the complexity that arises when they are generalised to many sites or to lattice 
problems. They also lack the physically intuitive appeal of the mean-field approach 
which corresponds to a simple renormalisation of the Fermi liquid picture. 

Here we consider a method of generating mean fields directly for the Hubbard 
operators from which we might hope to gain the intuitive advantages of mean fields 
without the limitations imposed by the requirement of a constraint field in the slave 
Boson method. The method is based on a truncation of the equations of motion for X- 
operators which generate elementary excitations. For example, an exact single-particle 
excitation operator Q where [ H ,  Q]-  = we.$, with o,, the excitation energy and H the 
Hamiltonian, can be expressed as a linear combination of operators AA in a complete set 
{AA} = C. An approximation to this excitation can be made by using just a subset, C‘, 
of these. In the equations of motion for the elements of C’, operators will appear that 
are not contained in C’. These need not be neglected entirely but can be takens into 
account by projecting them back onto the set C’ by using a suitably defined inner 
product. For a pair of operatorSA and B we use the inner product {A, B} = ( [ B ,  A’],) 
where ( ) indicates a thermal expectation value with respect to the Hamiltonian H .  The 
anti-commutator is used if bothA and B are Fermi-like, i.e., correspond to the creation 
or annihilation of an odd number of fermions. An operator outside the set C’ = {A,,} 
can be replaced by its projection onto the set C’ according to 

This provides a systematic way of terminatiing the equations of motion and can be 
applied to thermal or double-time Green functions (Goryachev etaZl982). This approach 
has been previously applied to the non-degenerate Anderson model (Bowen 1975, 
1978). It is similar to the memory function method (Moriya 1965) but with a different 
definition for the inner product. Here we apply it to the U+ x ,  N-fold-degenerate 
Anderson model and show that it leads to an exact mean-field result in the limit N +  x .  

The Hamiltonian for the N-fold-degenerate U+ 0~ Anderson model is 

H = EkCkfmCkm f EOXW f E l X m m  f (VkXmOCkm + v,*c&nXOm) 
k, m m k, m 

where ckfm (ckm) create (annihilate) conduction band states with total z component of 
angular momentum m about the impurity site. The X-operators are constructed from 
the state IO), which is the state corresponding to a non-magnetic configuration, and the 
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states Im), which correspond to one extra localised electron with total z component of 
angular momentum m. Examples of operators that generate an excitation in which a 
single particle is annihilated are X,,, Ckm CkmXO, and XmOck+,ckm. We base the lowest- 
order approximation on retaining the minimal set {X,,, Ck,} which does not involve any 
particle-hole pairs. 

In developing the equations of motion we require the commutator 

[xOm, = V k ( a m m ' X W C k m  + X m ' m C k m ' )  + &fXOm (1) 
k,m' 

where ef = E l  - E,. If the first term on the right-hand side is projected onto the state 
Ckm we obtain term 

which corresponds to an intuitive decoupling of the terms in (1). However, in projecting 
onto X,,, the remaining operator of the minimal set, we obtain the additional term 

- [ V k ( l  - a m m ' ) / ( x W  + ~ m m ~ ] ( ~ m ~ O ~ k m r ) ~ O m ~  
k ,m'  

This term, which does not correspond to an obvious decoupling of (l), can be absorbed 
as a renormalisation of the f level to give 

Applying this scheme to calculate the double-time thermal Green function ((X,,; X,,)) = 
GL(u),  we find 

where D, = ( X o o  + X,,). This Green function is of the same form as in the non- 
interacting (U  = 0) Anderson model but with a renormalised f level and a renormalised 
resonance width A = DmA where 

A = X x  / v k / 2 a ( w  - & k ) .  
k 

The self-consistent equation for the correlation function (Xm'OCkm') that appears in (2) 
leads to the self-consistent equation for Ef at T = 0 

Cf = Ef - [ ( N  - l ) A / n ]  ln(g/eg + A 2 / D )  (4) 
where 2 0  is the width of a conduction band that is taken to be constant and half-filled. 

There are two limits in which the spectral density of the Green function GL(u)  has 
a single resonance. These are the case N = 1 and the case N +  CQ. The case N = 1 is 
trivial for then, as is evident from ( 2 ) ,  Dm = 1 so A = A and Ef = Ef. If the N +  CQ limit is 
taken in the usual way so that N A  is finite then, to leading order in 1/N, D, + (X,) = 
(1 - nf), where nf is the total occupation of the impurity f level and Ef is given by 

E f  = Ef - ( N A / n )  1n(Ef/D). ( 5 )  

If Ef = TA is the solution of ( 5 )  with Ef > 0 then Gf,(u) = (1 - nf)/(u - TA) with the 
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corresponding spectral density p h ( o )  = (1 - n f ) 6 ( o  - TA) .  These results satisfy the 
sum rules on the spectral density in the large-N limit at T = 0: 

0 / d o  p L ( o )  = 0 /=  d o  p f , (o )  = (1 - nf) 
--cc J O  

identically. As a consequence, these sum rules cannot be used to determine nf .  The f- 
level occupation can, however, be deduced from the Friedel sum rule in the large-N 
limit, 

1 
n f  = - lim Im(1n GL,(o + io+)) n ‘V-... 

giving 

n f  = (NA/rtT,)( l+ NA/nT,)-’ 

( 7 )  

which is the leading-order large-N result. These results are, of course, all well known. 
The new feture is that they have been derived from a mean-field theory deduced from 
the systematic application of a projection method for Hubbard X-operators without 
introduction of auxiliary Bose or constraint fields. The mean field is exact for N = 1 as 
well as for N - ,  m. 

At this lowest level of approximation the spectral density deduced for GL(o) cor- 
responds to a single resonance. This is not appropriate in the Kondo regime where 
Ef < 0, for small values of N (other than N = 1). For we know that when Ef < 0 the 
spectral density has, in general, two resonances; a narrow one just above the Fermi level 
(Kondo resonance) and another of width A near the originalf-level position Ef .  However, 
on enlarging the basis set of operators C’, the projection method provides a hierarchy 
of approximations. We are currently examining the effect of expanding the minimal 
basis C’ to include operators corresponding to a single electron-hole pair. 

In summary, we have established that it is possible to describe asymptotically exact 
mean fields for Hubbard X-operators without invoking slave Bosons or constraint 
fields. Higher-order approximations can be generated in a systematic way. We have 
demonstrated the method for the degenerate U+ co Anderson model. But the generality 
of the approach suggests its applicability to other strong-correlation problems such as 
the Hubbard model and the periodic Anderson model. 
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